Estimate highest density intervals and success rates from hap.py counts using a Binomial model and empirical Bayes. See package docs for details on method implementation.
estimate_hdi(df, successes_col, totals_col, group_cols, aggregate_only = TRUE, significance = 0.05, sample_size = 1e+05, max_alpha1 = 1000)
df | A |
---|---|
successes_col | Name of the column that contains success counts. |
totals_col | Name of the column that contains total counts. |
group_cols | Vector of columns to group counts by. Observations within the same group will be treated as replicates. |
aggregate_only | Estimate HDIs for aggregate replicate only (speeds up execution). Default: TRUE. |
significance | Significance for HDI estimation. Default: 0.05 (= 95% HDIs). |
sample_size | Number of observations to draw from the Beta posterior to estimate HDIs. Default: 1e5. |
max_alpha1 | Upper bound for alpha hyperparameter in the aggregate Beta posterior. |
A data.frame
with performance counts, model hyperparameters,
success rate and HDI estimates.
# NOT RUN { hdi <- estimate_hdi(df, successes_col = 'TRUTH.TP', totals_col = 'TRUTH.TOTAL', group_cols = c('Group.Id', 'Subset', 'Type', 'Subtype')) # }