Read a directory of hap.py output files into an R data structure.

read_happy(happy_prefix, lazy = TRUE, quietly = FALSE)

Arguments

happy_prefix

hap.py output prefix (and path)

lazy

store lesser-used output as unevaluated promises rather than reading everything at once

quietly

inhibit logging messages as files are loaded

Value

A list structure containing hap.py output

Examples

# NOT RUN { # run hap.py from commandline: # hap.py truth.vcf query.vcf -o /output/path/prefix # load result into R happy <- read_happy('/output/path/prefix') # }
# load demo data supplied with package happy_input <- system.file("extdata", "happy_demo.summary.csv", package = "happyR") happy_prefix <- sub(".summary.csv", "", happy_input) hapdata <- read_happy(happy_prefix)
#> Reading summary table
#> Reading extended table
#> Reading precision-recall curve data
print(hapdata)
#> Hap.py result containing: summary, extended, pr_curve #> Loaded from: /Users/mgonzalez/workspace/happyR_v2.0/inst/extdata/happy_demo (hap.py version: v0.3.9) #> #> # A tibble: 4 x 17 #> Type Filter TRUTH.TOTAL TRUTH.TP TRUTH.FN QUERY.TOTAL QUERY.FP QUERY.UNK #> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 INDEL ALL 8937 7839 1098 11812 343 3520 #> 2 INDEL PASS 8937 7550 1387 9971 283 1964 #> 3 SNP ALL 52494 52125 369 90092 582 37348 #> 4 SNP PASS 52494 46920 5574 48078 143 992 #> # … with 9 more variables: FP.gt <dbl>, METRIC.Recall <dbl>, #> # METRIC.Precision <dbl>, METRIC.Frac_NA <dbl>, METRIC.F1_Score <dbl>, #> # TRUTH.TOTAL.TiTv_ratio <dbl>, QUERY.TOTAL.TiTv_ratio <dbl>, #> # TRUTH.TOTAL.het_hom_ratio <dbl>, QUERY.TOTAL.het_hom_ratio <dbl>